Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1183763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426033

RESUMO

Omicron variant is evolving into numerous sub variants with time and the information on the characteristics of these newly evolving variants are scant. Here we performed a pathogenicity evaluation of Omicron sub variants BA.2.12, BA.5.2 and XBB.1 against the Delta variant in 6-8-week-old Syrian hamster model. Body weight change, viral load in respiratory organs by real time RT-PCR/titration, cytokine mRNA quantification and histopathological evaluation of the lungs were performed. The intranasal infection of the BA.2.12, BA.5.2 and XBB.1 variants in hamster model resulted in body weight loss/reduced weight gain, inflammatory cytokine response and interstitial pneumonia with lesser severity compared to the Delta variant infection. Among the variants studied, BA.2.12 and XBB.1 showed lesser viral shedding through the upper respiratory tract, whereas the BA.5.2 showed comparable viral RNA shedding as that of the Delta variant. The study shows that the Omicron BA.2 sub variants may show difference in disease severity and transmissibility amongst each other whereas the overall disease severity of the Omicron sub variants studied were less compared to the Delta variant. The evolving Omicron sub variants and recombinants should be monitored for their properties.

2.
Virulence ; 14(1): 2224642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37312405

RESUMO

Nipah virus (NiV) is a high-risk pathogen which can cause fatal infections in humans. The Indian isolate from the 2018 outbreak in the Kerala state of India showed ~ 4% nucleotide and amino acid difference in comparison to the Bangladesh strains of NiV and the substitutions observed were mostly not present in the region of any functional significance except for the phosphoprotein gene. The differential expression of viral genes was observed following infection in Vero (ATCC® CCL-81™) and BHK-21 cells. Intraperitoneal infection in the 10-12-week-old, Syrian hamster model induced dose dependant multisystemic disease characterized by prominent vascular lesions in lungs, brain, kidney and extra vascular lesions in brain and lungs. Congestion, haemorrhages, inflammatory cell infiltration, thrombosis and rarely endothelial syncitial cell formation were seen in the blood vessels. Intranasal infection resulted in respiratory tract infection characterised by pneumonia. The model showed disease characteristics resembling the human NiV infection except that of myocarditis similar to that reported by NiV-Malaysia and NiV-Bangladesh isolates in hamster model. The variation observed in the genome of the Indian isolate at the amino acid levels should be explored further for any functional significance.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Cricetinae , Animais , Humanos , Vírus Nipah/genética , Virulência , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/patologia , Mesocricetus , Genômica , Perfilação da Expressão Gênica
3.
J Med Virol ; 95(2): e28484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625386

RESUMO

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , SARS-CoV-2 , Macaca mulatta , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
4.
Vaccines (Basel) ; 10(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36423057

RESUMO

The unique mutations of the SARS-CoV-2 Omicron variant are associated with increased transmissibility, immune escape, increased binding affinity to ACE-2, and increased viral load. Omicron exhibited a shift in tropism infecting the upper respiratory tract compared to other variants of concern which have tropism for the lower respiratory tract. The tropism of omicron variants in cell lines of different hosts and tissue origins still remains unclear. Considering this, we assessed the susceptibility of different cell lines to the SARS-CoV-2 omicron BA.1.1 variant and permissiveness among different cell lines for omicron replication. Susceptibility and permissiveness of a total of eleven cell lines, including six animal cell lines and five human cell lines for omicron BA.1.1 infection, were evaluated by infecting individual cell lines with omicron BA.1.1 isolate at a 0.1 multiplicity of infection. Virus replication was assessed by observation of cytopathic effects followed by viral load determination by real-time PCR assay and virus infectivity determination by TCID50 assay. The characteristic cytopathic effect, increased viral load, and productive omicron replication was detected in Vero CCL-81, Vero E6, Vero/hSLAM, MA-104, and Calu-3 cells. Although LLC MK-2 cells showed an increased TCID50 titer at the second infection, the viral load did not show much difference in both infections. Caco-2 cells did not show evident CPE, but they supported omicron replication at a low level. A549, RD, MRC-5, and BHK-21 cells supported omicron BA.1.1 replication without the CPE. This is the first study on the comparison of susceptibility of different cell lines to Omicron variant BA.1.1, which might be useful for future studies on emerging SARS-CoV-2 variants.

5.
Front Med (Lausanne) ; 9: 835168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372453

RESUMO

The main route of the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are through respiratory pathways and close contact of human-to-human. While information about other modes of transmission is comparatively less, some published literature supporting the likelihood of a fecal-oral mode of transmission has been accumulating. The diagnosis of SARS-COV-2 infected cases is based on the real-time reverse transcription-PCR (RT-PCR). The fecal excretion of SARS-COV-2 has been reported frequently, however, the role of fecal viral load with the severity of disease is not yet clear. Our study focused on the investigation of SARS-CoV-2 shedding in the fecal samples of patients with coronavirus disease 2019 (COVID-19). A total of 280 RT-PCR-positive patients were enrolled, among them 15.4% had gastrointestinal (GI) symptoms. It was shown that 62% of the patients were positive for SARS-CoV-2 RNA in fecal specimens. This positivity was not related to the presence of GI symptoms and the severity of disease. The next generation sequencing [NGS] of SARS-CoV-2 from fecal samples of patients was performed to analyze mutational variations. Findings from this study not only emphasized the potential presence of SARS-CoV-2 in feces, but also its continuing mutational changes and its possible role in fecal-oral transmission.

6.
Viruses ; 14(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35336868

RESUMO

Due to the failure of virus isolation of the Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, an initial in vivo and subsequent in vitro approach was utilized for the isolation of the virus. A total of 74 oropharyngeal/nasopharyngeal specimens were collected from SARS-CoV-2 positive international travellers and a contact case at Delhi and Mumbai, India. All the specimens were sequenced using next-generation sequencing and simultaneously inoculated onto Vero CCL-81 cells for virus isolation. Subsequently, two omicron positive specimens were inoculated into Syrian hamsters for two passages. The initial passage of the positive hamster specimens was inoculated onto Vero CCL-81 cells. The clinical specimens, hamster specimens, and Vero CCL-81 passages were sequenced to assess the mutational changes in different host species. The replication of the Omicron variant in hamsters was confirmed with the presence of a high viral load in nasal turbinate and lung specimens of both passages. The successful isolation of the virus from hamster specimens with Vero CCL-81 was observed with cytopathic effect in infected cells and high viral load in the cell suspension. The genome analysis revealed the presence of L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene of hamster passage sequences and an absence of V17I mutation in E gene in hamster passage sequences, unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequences, suggesting intact pathogenicity of the virus isolate. Our data demonstrated successful isolation of the Omicron variant with the in vivo method first followed by in vitro method. The virus isolate could be used in the future to explore different aspects of the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Cricetinae , Genômica , Humanos , SARS-CoV-2/genética , Células Vero
7.
Front Public Health ; 10: 818545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252095

RESUMO

We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.


Assuntos
COVID-19 , Vírus Nipah , Criança , Surtos de Doenças , Humanos , Masculino , Vírus Nipah/genética , Pandemias , SARS-CoV-2
8.
J Med Virol ; 94(7): 3404-3409, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35211985

RESUMO

International travel has been the major source for the rapid spread of new SARS-CoV-2 variants across the globe. During SARS-CoV-2 genomic surveillance, a total of 212 SARS-CoV-2 positive clinical specimens were sequenced using next-generation sequencing. A complete SARS-CoV-2 genome could be retrieved from 90 clinical specimens. Of them, 14 sequences belonged to the Eta variant from clinical specimens of international travelers (n = 12) and local residents (n = 2) of India, and 76 belonged to other SARS-CoV-2 variants. Of all the Eta-positive specimens, the virus isolates were obtained from the clinical specimens of six international travelers. Many variants of interest have been found to cause substantial community transmission or cluster infections. The detection of this variant with lethal E484K mutation across the globe and India necessitates persistent genomic surveillance of the SARS-CoV-2 variants, which would aid in taking preventive action.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , SARS-CoV-2/genética
9.
J Infect Public Health ; 15(2): 182-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974274

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants in places where the virus is uncontained poses a global threat from the perspective of public health and vaccine efficacy. Travel has been important factor for the easy spread of SARS-CoV-2 variants worldwide. India has also observed the importation of SARS-CoV-2 variants through international travelers. METHODS: In this study, we have collected the oropharyngeal and nasopharyngeal swab specimens from 58 individuals with travel history from United Arab Emirates (UAE), East, West and South Africa, Qatar, Ukraine and Saudi Arabia arrived in India during February-March 2021. The clinical specimens were initially screened for SARS-CoV-2 using Real time RT-PCR. All the specimens were inoculated on to Vero CCL-81 cells for virus isolation. The viral isolates were further sequenced using Next-Generation Sequencing. RESULTS: All 58 cases were tested positive for SARS-CoV-2 using Real time RT-PCR. Four specimens showed progressive infectivity with fusion of the infected cells with neighboring cells leading to large mass of cells. Replication competent virus was confirmed from culture supernatant of the passage 2 using Real time RT-PCR. Two plaque purified SARS-CoV-2 isolates demonstrated high viral RNA load of 3.8-7.5 × 1011 and 1.1-1.6 × 1011 at passage 4 and 5 respectively. Nucleotide variations along with amino acid changes were also observed among these two isolates at passage 2-5. All four cases were male with no symptoms and co-morbidity. The sequence analysis has shown two different clusters, first cluster with nucleotide deletions in the ORF1ab and the spike, while second cluster with deletions in spike region. The viral isolates demonstrated 99.88-99.96% nucleotide identity with the representative sequences of Beta variant (B.1.351). CONCLUSION: These findings suggest easier transmission of SARS-CoV-2 variants with human mobility through international travel. The isolated Beta variant would be useful to determine the protective efficacy of the currently available and upcoming COVID-19 vaccines in India.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Masculino , Emirados Árabes Unidos
10.
J Infect Public Health ; 15(2): 164-171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959053

RESUMO

BACKGROUND: Considering the potential threat from emerging Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) variants and the rising COVID-19 cases, SARS-CoV-2 genomic surveillance is ongoing in India. We report herewith the isolation of the P.2 variant (B.1.1.28.2) from international travelers and further its pathogenicity evaluation and comparison with D614G variant (B.1) in hamster model. METHODS: Virus isolation was performed in Vero CCL81 cells and genomic characterization by next generation sequencing. The pathogenicity and host immune response of the isolate was assessed in Syrian hamster model and compared with B.1 variant. RESULTS: B.1.1.28.2 variant was isolated from nasal/throat swabs of international travelers returned to India from United Kingdom and Brazil. The B.1.1.28.2 variant induced body weight loss, viral replication in the respiratory tract and caused severe lung pathology in infected Syrian hamster model in comparison, with B.1 variant infected hamsters. The sera from B.1.1.28.2 infected hamsters efficiently neutralized the D614G variant virus whereas 6-fold reduction in the neutralization was seen in case of D614G variant infected hamsters' sera with the B.1.1.28.2 variant. CONCLUSIONS: B.1.1.28.2 lineage variant could be successfully isolated and characterization could be performed. Pathogenicity of the isolate was demonstrated in Syrian hamster model and the findings of neutralization reduction is of great concern and point towards the need for screening the vaccines for efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Modelos Animais de Doenças , Humanos , Pulmão , Virulência
11.
Pathogens ; 10(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34959541

RESUMO

The emergence of new severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has been a global concern. The B.1.1.7 variant of SARS CoV-2 is reported to cause higher transmission. The study investigates the replication cycle and transcriptional pattern of the B.1.1.7 to hypothesis the possible role of different genes in viral replication. It was observed that the B.1.1.7 variant required a longer maturation time. The transcriptional response demonstrated higher expression of ORF6 and ORF8 compared to nucleocapsid transcript till the eclipse period which might influence higher viral replication. The number of infectious viruses titer is higher in the B.1.1.7, despite a lesser copy number than B.1, indicating higher transmissibility. The experimental evidence published linked ORF6 and ORF8 to play important role in replication and we also observed their higher expression. This leads us to hypothesis the possible role of ORF6 and ORF8 in B.1.1.7 higher replication which causes higher transmission.

12.
Vector Borne Zoonotic Dis ; 21(8): 638-641, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197265

RESUMO

Introduction: Many SARS-CoV-2 variants of concern (VOC) have been reported recently that were linked to increased transmission. In our earlier study using VOC 202012/01 (U.K. variant) and D614G variant in the hamster model, we observed higher viral RNA shedding through nasal wash in the case of U.K. variant with lower pathogenicity in lung. In this study, we have studied transmission of these two variants by direct contact, aerosol, and fomite routes in Syrian hamsters and compared the viral load and body weight changes in hamsters exposed by both variants to understand the transmission efficiency. Methods: Nasal, throat, and rectal swabs were collected sequentially to assess viral load till 14 days. Results: Transmission could be established by direct, aerosol, and fomite contact in Syrian hamsters. Body weight loss or viral load in the contact animals exposed did not show any statistical significance. Conclusion: The study demonstrated comparable transmission of both U.K. and D614G variants of SARS-CoV-2 in Syrian hamsters in the given conditions. Provided these data, it seems that all the routes of exposure are effective leading to higher transmission.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/classificação , Aerossóis , Animais , Cricetinae , Modelos Animais de Doenças , Fômites/virologia , Anticorpos Anti-HIV/análise , Imunoglobulina G/análise , Pulmão , Masculino , Mesocricetus , Cavidade Nasal/virologia , Faringe/virologia , RNA Viral/análise , Reto/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Reino Unido , Carga Viral , Redução de Peso
15.
Nat Commun ; 12(1): 1386, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654090

RESUMO

The COVID-19 pandemic is a global health crisis that poses a great challenge to the public health system of affected countries. Safe and effective vaccines are needed to overcome this crisis. Here, we develop and assess the protective efficacy and immunogenicity of an inactivated SARS-CoV-2 vaccine in rhesus macaques. Twenty macaques were divided into four groups of five animals each. One group was administered a placebo, while three groups were immunized with three different vaccine candidates of BBV152 at 0 and 14 days. All the macaques were challenged with SARS-CoV-2 fourteen days after the second dose. The protective response was observed with increasing SARS-CoV-2 specific IgG and neutralizing antibody titers from 3rd-week post-immunization. Viral clearance was observed from bronchoalveolar lavage fluid, nasal swab, throat swab and lung tissues at 7 days post-infection in the vaccinated groups. No evidence of pneumonia was observed by histopathological examination in vaccinated groups, unlike the placebo group which exhibited interstitial pneumonia and localization of viral antigen in the alveolar epithelium and macrophages by immunohistochemistry. This vaccine candidate BBV152 has completed Phase I/II (NCT04471519) clinical trials in India and is presently in phase III, data of this study substantiates the immunogenicity and protective efficacy of the vaccine candidates.


Assuntos
Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2/patogenicidade , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Linfócitos/imunologia , Linfócitos/metabolismo , Macaca mulatta , Masculino , Pneumonia/imunologia , Pneumonia/metabolismo
16.
iScience ; 24(2): 102054, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33521604

RESUMO

The availability of a safe and effective vaccine would be the eventual measure to deal with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) threat. Here, we have assessed the immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidates BBV152A, BBV152B, and BBV152C in Syrian hamsters. Three dose vaccination regimes with vaccine candidates induced significant titers of SARS-CoV-2-specific IgG and neutralizing antibodies. BBV152A and BBV152B vaccine candidates remarkably generated a quick and robust immune response. Post-SARS-CoV-2 infection, vaccinated hamsters did not show any histopathological changes in the lungs. The protection of the hamster was evident by the rapid clearance of the virus from lower respiratory tract, reduced virus load in upper respiratory tract, absence of lung pathology, and robust humoral immune response. These findings confirm the immunogenic potential of the vaccine candidates and further protection of hamsters challenged with SARS-CoV-2. Of the three candidates, BBV152A showed the better response.

18.
Indian J Med Res ; 152(1 & 2): 82-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859866

RESUMO

BACKGROUND & OBJECTIVES: The global pandemic caused by SARS-CoV-2 virus has challenged public health system worldwide due to the unavailability of approved preventive and therapeutic options. Identification of neutralizing antibodies (NAb) and understanding their role is important. However, the data on kinetics of NAb response among COVID-19 patients are unclear. To understand the NAb response in COVID-19 patients, we compared the findings of microneutralization test (MNT) and plaque reduction neutralization test (PRNT) for the SARS-CoV-2. Further, the kinetics of NAb response among COVID-19 patients was assessed. METHODS: A total of 343 blood samples (89 positive, 58 negative for SARS-CoV-2 and 17 cross-reactive and 179 serum from healthy individuals) were collected and tested by MNT and PRNT. SARS-CoV-2 virus was prepared by propagating the virus in Vero CCL-81 cells. The intra-class correlation was calculated to assess the correlation between MNT and PRNT. The neutralizing endpoint as the reduction in the number of plaque count by 90 per cent (PRNT90) was also calculated. RESULTS: The analysis of MNT and PRNT quantitative results indicated that the intra-class correlation was 0.520. Of the 89 confirmed COVID-19 patients, 64 (71.9%) showed NAb response. INTERPRETATION & CONCLUSIONS: The results of MNT and PRNT were specific with no cross-reactivity. In the early stages of infection, the NAb response was observed with variable antibody kinetics. The neutralization assays can be used for titration of NAb in recovered/vaccinated or infected COVID-19 patients.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Infecções por Coronavirus/sangue , Testes de Neutralização , Pandemias , Pneumonia Viral/sangue , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Criança , Chlorocebus aethiops/imunologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero/imunologia , Adulto Jovem
19.
Indian J Med Res ; 152(1 & 2): 70-76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32773420

RESUMO

BACKGROUND & OBJECTIVES: The genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belonging to the family Coronaviridae, encodes for structural, non-structural, and accessory proteins, which are required for replication of the virus. These proteins are encoded by different genes present on the SARS-CoV-2 genome. The expression pattern of these genes in the host cells needs to be assessed. This study was undertaken to understand the transcription pattern of the SARS-CoV-2 genes in the Vero CCL-81 cells during the course of infection. METHODS: Vero CCL-81 cells were infected with the SARS-CoV-2 virus inoculum having a 0.1 multiplicity of infection. The supernatants and cell pellets were harvested after centrifugation at different time points, post-infection. The 50% tissue culture infective dose (TCID50)and cycle threshold (Ct) values of the E and the RdRp-2 genes were calculated. Next-generation sequencing of the harvested sample was carried out to observe the expression pattern of the virus by mapping to the SARS-CoV-2 Wuhan HU-1 reference sequence. The expressions were in terms of the reads per kilobase million (RPKM) values. RESULTS: In the inital six hours post-infection, the copy numbers of E and RdRp-2 genes were approximately constant, which raised 10 log-fold and continued to increase till the 12 h post-infection (hpi). The TCID50 was observed in the supernatant after 7 hpi, indicating the release of the viral progeny. ORF8 and ORF7a, along with the nucleocapsid transcript, were found to express at higher levels. INTERPRETATION & CONCLUSIONS: This study was a step towards understanding the growth kinetics of the SARS-CoV-2 replication cycle. The findings indicated that ORF8 and ORF7b gene transcripts were expressed in higher amounts indicating their essential role in viral replication. Future studies need to be conducted to explore their role in the SARS-CoV-2 replication.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Pneumonia Viral/genética , Transcriptoma/genética , Animais , Betacoronavirus/patogenicidade , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero/virologia , Replicação Viral/genética
20.
Sci Rep ; 10(1): 12561, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724103

RESUMO

The present manuscript deals with experimental infections of bonnet macaques (Macaca radiata) to study disease progression for better insights into the Kyasanur Forest Disease (KFD) pathogenesis and transmission. Experimentally, 10 monkeys were inoculated with KFD virus (KFDV) (high or low dose) and were regularly monitored and sampled for various body fluids and tissues at preset time points. We found that only 2 out of the 10 animals showed marked clinical signs becoming moribund, both in the low dose group, even though viremia, virus shedding in the secretions and excretions were evident in all inoculated monkeys. Anti-KFDV immunoglobulin (Ig)M antibody response was observed around a week after inoculation and anti-KFDV IgG antibody response after two weeks. Anaemia, leucopenia, thrombocytopenia, monocytosis, increase in average clotting time, and reduction in the serum protein levels were evident. The virus could be re-isolated from the skin during the viremic period. The persistence of viral RNA in the gastrointestinal tract and lymph nodes was seen up to 53 and 81 days respectively. Neuro-invasion was observed only in moribund macaques. Re-challenge with the virus after 21 days of initial inoculation in a monkey did not result in virus shedding or immune response boosting.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Doença da Floresta de Kyasanur/veterinária , Doenças dos Macacos/sangue , Viremia/veterinária , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Cinética , Doença da Floresta de Kyasanur/sangue , Doença da Floresta de Kyasanur/virologia , Macaca radiata/sangue , Macaca radiata/virologia , Doenças dos Macacos/virologia , Viremia/sangue , Viremia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...